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Abstract—Brute force radio frequency ray tracing scales well
on multicore computing architectures as each ray can be traced
independently. The discrete nature of rays with no thickness
shows a weakness in the aggregation step where nearby rays
to the observation point need to be detected and differentiated.
The fact that angular defect cannot be distributed evenly for
more than twelve rays in space leads to a double counting
phenomenon, i.e., the radius of a reception sphere cannot exclude
all but one ray per wavefront. This either leads to significant
signal errors or requires the use of space and time consuming
wavefront differentiation. Bloom filters configured with marginal
false positive rate are proposed here as a replacement of the exact
wavefront differentiation, effectively eliminating double counting
errors. Substantial space gains while computing channel impulse
responses are reported. Further, due to the importance of ray-
launching template grids for the double counting avoidance,
the analytical angular bounds for the two common icosahedral
grids are presented. The frequently referenced approximate
double counting probability of 20.9% is shown to be highly
underestimated when affected by the refraction- and diffraction-
induced changes in ray spacing.

Index Terms—Algorithm optimization, Bloom filter, channel
impulse response, radiowave propagation, ray tracing.

I. INTRODUCTION

RADIO frequency (RF) ray tracing is a valuable tool in
the development of wireless technologies and services. It

allows far superior modelling of electromagnetic propagation
effects than any other stochastic modelling. Accuracy-wise
it can only be surpassed by approximations of spatial and
temporal derivatives appearing in Maxwell’s equations, which
is computationally infeasible if the wavelength is exceedingly
small compared to the size of modelled environment. Ad-
vanced ray-tracing techniques take into account the majority
of paths the real wavefront would traverse and model actual
physical phenomena responsible for propagation of electro-
magnetic waves.

Many ray-tracing algorithms have been proposed since the
first ideas by Ikegami et al. [1] in 1991. From the ray handling
perspective, most of them fall into three computationally dis-
tinct groups. The first, often seen as the brute force approach,
effectively traces a large number of rays from the transmitting
source in all directions into the scene. The concept of a
reception sphere is usually needed to detect rays passing by
the receivers [2]. The algorithms from this group refer to the
principle as ray launching [3], pincushion method [4] or ray
shooting and bouncing (SBR) [5], which is also a designation
used here. The second approach aggregates traced rays as
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ray tubes [6] or beams [7] in order to reduce computational
complexity. Finally, the third imaging approach [8] goes the
furthest by using entire scene surfaces as ray aggregation units.

Here we restrict ourselves to the problem of double counting
avoidance that emerges in the SBR group of algorithms [2].
Namely, signal aggregation at given observation point dictates
the use of variable-sized reception spheres to detect at least one
ray per passing wavefront. The geometry of ray distribution
in space does not allow perfect detection of exactly one ray
per wavefront. Double or even multiple hits need to be filtered
out before signal accumulation.

Several approximate algorithms have been proposed, includ-
ing [2], [3], [9], [10], as well as the exact double counting
avoidance [11] at high space and time cost. Imperfect double
counting may be tolerated for some simulation tasks, such
as signal coverage estimation or even more demanding RSSI
evaluation. Other tasks strive to eliminate algorithmic errors as
much as possible. Most notable among them is that of finding
accurate channel impulse responses (CIRs), with the need for
precise simulation tools in the fields such as ultra-wideband
communications and indoor localization.

The probability of double hits and the reception sphere sizes
depend on the properties of icosahedral grids used as ray
generation templates. We first review new findings on angular
bounds that affect the double counting problem [12]. Next,
predicated on the assumption of rays hitting the reception
sphere at no particular order, the optimal wavefront differ-
entiation is studied. Evaluating responses at multiple points
simultaneously in a single simulation run while using exact
wavefront differentiation turns out to be space prohibitive for
many computing architectures. A straightforward reduction
of excessive space requirements is to introduce some form
of data compression without further prolonging the already
time-consuming ray-tracing procedures. Apparently conflict-
ing requirements can be satisfied if we allow some errors
and keep the number sufficiently low. Bloom filters provide
such space-efficient probabilistic data structures while offering
constant-time update and set membership tests [13]. Their
use as near-optimal wavefront differentiator is proposed here.
Trade-off between size and accuracy is configured by false
positive rate, which is filter’s key parameter. Note that many
applications in computing and particularly in communication
systems make use of Bloom filters. Load balancing, routing,
web caching, network security [14], databases and distributed
storage systems [15] are just some of them, where managed
data sets consist of firewall addresses, routing prefixes, TCP
flow labels, cache indices, etc. Apart from the basic filter,
numerous variants adapted to specific problem domains have
been developed, with several of them introduced throughout



0018-926X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2019.2905780, IEEE
Transactions on Antennas and Propagation

2

the paper. A comprehensive survey on the subject is available
in [16].

Although the source of the double counting errors is
clearly within the ray-tracing algorithm, we evaluate proposed
algorithm also in the context of path loss measurements.
Note, however, that a number of factors influence such a
comparison, including, but not limited to, how well we capture
the geometry, composition of materials, or presence of vehicles
and people.

In summary, the contributions of this paper are as follows:
• Near-optimal double counting avoidance at significantly

reduced space cost and lower time complexity than
any known solution is proposed by the introduction of
versatile Bloom filtering as a wavefront differentiation
technique.

• Analytical bounds on the reception sphere radius are
provided for the two common icosahedral grids used as
the ray launching templates. Bounds suggested in the
literature are vague, usually quoting approximate average
separation angle.

• Irregularities in wavefront ray spacing are observed for
refracted and diffracted rays if rays are traced in full
compliance with Snell’s law and geometrical theory of
diffraction is employed.

• The effect of double counting is studied in the context
of synthetic channel impulse responses and evaluated
against measured path losses. Near-optimal double count-
ing avoidance is shown to be mandatory when major
sources of algorithmic errors need to be eliminated.
Indoor and outdoor cases are presented.

In the following, Section II studies the reception sphere
radius requirements for the two grid launching templates in
the light of recent analytical findings. Refracted and diffracted
rays are shown to further worsen the problem. Related work
on the double counting avoidance is presented in Section III.
Wavefront differentiation using Bloom filter is described in
Section IV. The evaluation of the proposed filtering in the
contexts of plane earth model, narrowband channel impulse
responses and measured path losses is given in Section V.
The use of more elaborate filters is discussed in Section VI,
followed by the conclusion in Section VII.

II. DOUBLE COUNTING PROBLEM

The shooting and bouncing rays (SBR) effectively traces
a large number of rays from the transmitting source in all
directions into the scene while modelling surface reflections,
through-wall transmissions, edge diffractions and possibly
scattering phenomena. Using geometrical optics concepts in
describing radio frequency propagation implies that initial
rays are an abstraction of a single wavefront spreading into
space. Subsequent electromagnetic interactions with matter
initiate new wavefronts, described by another sets of reflected,
refracted, diffracted or scattered rays. The signal evaluation
at given observation point combines these wavefronts freely,
in the same way as if they are being transmitted by multiple
independent sources. However, each wavefront should be con-
sidered once and only once while passing by the observation
point.

r

αd

Fig. 1. Uniformly distributed rays on a wavefront surface are shown as
vertices of equilateral plane triangles. In order to guarantee at least one ray
hit, the minimum reception sphere radius is that of a triangle-circumscribed
circle.

Conceptually, rays have no thickness and common approach
to detect a nearby ray and thus a wavefront is to introduce a
sphere object with non-zero radius and inspect the intersecting
rays. Here the double counting problem emerges. Even under
the unrealistic assumption of uniformly distributed initial rays
it is not possible to have a reception sphere size that would
guarantee one hit per wavefront while completely avoiding
double hits. In Fig. 1 a wavefront surface is shown as a
plane of dotted equilateral triangle grid with each triangle
vertex representing a perpendicular ray. Adjacent vertices are
uniformly spaced by αd, where α denotes a constant angular
distance or separation between rays in radians and d the
wavefront propagation distance. In order to enclose at least
one vertex, a randomly drawn circle over the triangle grid
should have a minimum radius of the triangle-circumscribed
circle, i.e.,

r =
1√
3
αd. (1)

The wavefront surface is generally not a plane. Even though,
the minimum reception sphere radius converges to (1) as α gets
smaller. In this ideal scenario of uniformly distributed vertices,
the probability of randomly positioned circle spanning more
than one vertex is 2/

√
3 (π/3−

√
3/2) or approximately 20.9%

[2], which is frequently cited double counting probability.
The above value is only a lower limit for a number of rea-

sons. First, a uniform distribution of rays in three dimensions
cannot be achieved for more than 12 rays and maximum α
should be used in (1). The maximum could be local over
adjacent rays, which is difficult to implement, or global over
all pairs of adjacent rays. Secondly, the refracted and the
diffracted rays change spacing between each other in a non-
trivial way, making theoretical double counting probability
harder or even impossible to achieve.

Icosahedral grids have been used for launching the initial set
of rays since early SBR proposals. The maximum angular sep-
aration of grid vertices has been largely left to the numerical



0018-926X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2019.2905780, IEEE
Transactions on Antennas and Propagation

3

(a) (b)

(c) (d)

Fig. 2. Recursive versus non-recursive icosahedral grid construction; selected
base triangle (a) is recursively divided and projected twice (b, c), whereas non-
recursive construction starts with the final number of equilateral partitions (d).

evaluation. Only recently the research of geometric properties
of the icosahedral-hexagonal grids offered analytical bounds
for several grid construction algorithms [12]. The reception
sphere radii in the presented simulations are established using
those bounds.

A. Rays Maximum Angular Separation

Icosahedral grid on a sphere around the transmission point
provides excellent template for the initial set of rays. Ac-
cording to Gauss-Bonnet theorem, icosahedron distributes the
angular defect evenly over the most number of vertices among
all regular polyhedrons. Consequently, 12 rays defined by 12
icosahedron vertices on the surface of the enclosing sphere
is the maximum number of rays in space with constant
angular separation. Icosahedral grids, which are obtained by
dividing the initial 20 congruent equilateral plane triangles
and projecting denser triangle mesh to the enclosing sphere
surface, are commonly used to generate larger number of rays
with rather uniform distribution.

The recursive icosahedral grid construction is the most
straightforward and, due to its simplicity, commonly used by
the researchers. Each recursive step halves the sides of plane
triangles and projects newly introduced points on the enclosing
sphere to quadruple the number of spherical and corresponding
plane triangles. The refinement level n establishes the final
10 × 22n + 2 grid points acting as initial rays directions. In
Fig. 2, selected base triangle (a) is first divided into four
triangles with the vertices on the enclosing sphere (b). The
following recursive step doubles the number of plane triangles
(c).

On the other hand, the non-recursive construction has
greater flexibility in controlling the number of grid points. The
algorithm subdivides the initial icosahedron plane triangles

into a number of smaller congruent equilateral triangles, as
illustrated in Fig. 2 (d), and projects them on the enclosing
sphere in a single step. If initial triangle side is partitioned in
m sections, the construction produces 10×m2+2 grid points.

Rays angular distribution differs with respect to the chosen
grid construction, thus affecting the double counting differ-
ently. Whereas the initial plane triangles are equilateral, this
is not the case at higher refinement levels. For a recursive
construction, the exact relation between rays maximum angu-
lar distances at the subsequent refinement levels is obtained
from the proof of Lemma 3.12 given in [12] as

sin
αn+1

2
= 2−n sin

αn

2
/ cos

αn

2
. (2)

Using the initial angular separation of icosahedral grid points
measured from the icosahedron center

α0 = 2 sin−1

√
2

5 +
√
5
≈ 63.4349 deg (3)

one can calculate the exact maximum angular separation αn

at refinement level n.
For the non-recursive grid construction only the upper

bound on the maximum separation angle is analytically known,
however the bound is approached fast. Given the initial sub-
division of m sections, the maximum angular distance αm

converges to

lim
m→∞

αm =
1

m
sin(

2π

5
)−1(cos2

α0

2
− tan2

π

6
sin2

α0

2
)−

1
2

≈ 75.812

m
deg,

(4)

as shown in the proof of Theorem 3.14, also provided in [12].
For the purpose of interpreting paper results it is worthwhile

to mention that the ratio between the longest and the shortest
angular distance increases with the grid refinement level, and
it converges to approximately 1.195114 and 1.479348 for the
recursive and the non-recursive grids, respectively [12]. In
general, the non-recursive construction produces larger angle
variations.

B. Ray Spacing

Equation (1) is a tight bound for the line-of-sight and
reflected rays that guarantees at least one hit per wavefront,
given maximum separation angle α and propagation distance
d. Such a property does not hold for the refracted as well as
the diffracted rays in general.

If refracted rays are traced through general-shaped obstacles
in compliance with Snell’s law, spacing between rays is
affected by the obstacle material properties and angles of
incidence. Both increased and decreased spacing may occur
after rays leave the obstacle. However, when the environment
is composed of only wall-shaped objects with parallel interface
planes, which is commonly the case in indoor architectures,
equation (1) remains an upper bound for the reception sphere
size. Rays entering a transmission medium with higher index
of refraction, i.e., n2 > n1, change directions and thus
angles between adjacent rays in compliance with θtr =
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Fig. 3. Regular spacing of initially launched rays is distorted if edge
diffraction is modelled using Keller cones. Rays on a cone surface are spaced
closer than rays on adjacent cones when hitting a reception sphere.

(n1/n2) sin θinc, where θinc is the ray’s angle of incidence and
θtr is the angle of transmission. On leaving the transmission
medium with higher index of refraction at the opposite parallel
interface and reentering the initial transmission medium the
angle between the two rays is restored while leaving rays
closer to each other than expected by (1). In principle, equation
(1) can be rewritten by taking into account the indices of
refraction for both mediums and the obstacle depth. As the
calculation is non-trivial with possibly significant impact on
the ray-tracing performance, additional hits are commonly
allowed. Therefore, in a simulation, double, triple or even more
hits need to be filtered out by a double counting avoidance
algorithm.

The double counting problem becomes even worse if edge
diffraction phenomenon needs to be simulated. Diffraction
can be avoided in many indoor scenarios but not in the
outdoor urban scenarios where major signal contributions
originate from the diffracted paths. Modelling edge diffraction
in the SBR group of algorithms is commonly done using
the geometrical theory of diffraction [17] as illustrated in
Fig. 3. Wavefront rays passing in close vicinity to a diffraction
edge produce a number of diffracted rays on the surfaces of
Keller cones. Maximum separation angle α is typically used
to distribute rays around the cone surface because adjacent
cones are already α-spaced. The reception sphere size (1)
should match rays from different cones, thus the distance to the
transmission source is used. However, rays on the same cone
surface originate closer to the reception sphere and introduce
additional hits than predicted by (1).

III. DOUBLE COUNTING AVOIDANCE

Erroneously updating signal due to a double hit leads to
+6 dB power error per ray. One of the first attempts to reduce
the number of double hits is so-called Zero Counting (ZC)
algorithm [9]. Instead of (1) half the distance between rays is

proposed for the reception sphere radius, which results in a
number of missed wavefronts. Some of them are captured by
introducing auxiliary rays at the center of the icosahedral grid
faces, for which smaller

√
3/3 − 1/2 times the rays distance

is suggested for the reception sphere radius. Zero count
probability is estimated to be 4.97% in ideal case of uniformly
distributed rays. However, reduced spacing between rays due
to the strict interaction modelling is entirely overlooked. The
SBR that employs ZC could still experience double hits while
the total number of launched rays needs to be tripled.

A weighting approach to the double counting problem is
proposed in the Distributed Wavefronts (DW) algorithm. All
rays hitting the reception sphere contribute a limited amount
of signal power. The contribution is weighted in a way that
roughly produces signal levels invariant of the local distribu-
tion of rays [2]. Although the proposed weighting function
provides a useful compromise with low processing overhead,
it cannot replace the exact solution. The weights are based on
a Monte Carlo simulation designed to obtain best average fit.
Even though the algorithm is not a classical double counting
avoidance, it serves as one of the reference algorithms.

The Characteristic Sequences (CS) algorithm provides exact
double counting avoidance at high space and time cost [11].
Each wavefront is uniquely identified by a sequence of scene
interactions that rays experience before hitting the reception
sphere. Interactions with the same planar surface or with
the same diffraction edge are considered identical. Such a
sequence is called a characteristic sequence. In order to
distinguish rays belonging to different wavefronts—and reject
those representing already seen wavefronts—their character-
istic sequences are constructed while advancing rays through
the scene. A set of sequences is memorized per observation
point. On each new hit, ray’s sequence membership is tested.
If test fails, the newly arrived ray acts as a valid signal carrier
and its characteristic sequence is added to the set. Since the
sets are generally expected to be small, at least for typical
use cases, they are commonly stored as tables. A membership
query is then of O(n) time complexity, with constant update
cost. Here we use n to designate the expected number of
wavefronts at the observation point. Critical in most ray-
tracing implementations is the algorithm storage requirement.
Let depth be the maximum number of scene interactions a
ray is allowed to encounter during a simulation. Then the set
of characteristic sequences is O(n× depth) space bound.

Proposals of more compact representation of lengthy char-
acteristic sequences emerged early in the SBR research. Re-
placing a sequence with a pair of ray’s incident angle and
interaction count is rationalized in [10]. The excessive memory
requirement reduces to linear dependence on n, whereas the
set membership tests remain of the same time complexity but
with smaller constant factor. The double counting avoidance
algorithm, which we denote as the Angle and Interactions
(AI) algorithm, proclaims two rays with the same number of
interactions and similar sphere hitting directions as belonging
to the same wavefront. This is clearly a heuristic solution.
There is a possibility that two different wavefronts come
from similar directions while experiencing equal number of
scene interactions. Further, the angle similarity criterion is
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vaguely defined, as it is further explained in the evaluation
section. Both, time and space complexities of the AI algorithm
are O(n) while permitting some double counting errors for
smaller memory footprint.

Similar space and time observations hold for the Angle and
Distance (AD) algorithm, in which the number of interactions
is simply replaced with the propagation distance [3]. The algo-
rithm is even more imprecise than AI. The fact that even rays
of the same wavefront experience slightly different refraction
angles and consequently path lengths makes differentiation
based on the angles and distances highly susceptible to a
membership error.

IV. BLOOM FILTERING

As presented so far, the only acceptable wavefront differ-
entiation option is some variant of error-free characteristic
sequences, the use of which is limited by high memory
requirements. The aim of the proposed Bloom filtering is to
significantly reduce the needed space and time while providing
nearly optimal double counting avoidance. As shown in the
next section, the improvements can be remarkable.

Bloom filter emerged several decades ago as a lossy-
encoded hash table allowing some errors in membership test-
ing while allocating less memory than needed for the lossless
data structure [13]. The underlying idea of the proposed double
counting avoidance algorithm is to configure Bloom filter with
a small but still tolerable error rate while taking the advantage
of its inherent dataset compression.

Formally, Bloom filter is a data structure representing a
set of elements S = {x1, x2, x3, . . . , xn} and supporting at
least two operations—set addition and a membership query.
Plain array of m bits, denoting the filter size, is used to store
membership information instead of buckets or slots of a more
conventional hash table. Initially all bits are set to 0.

In order to add element x to set S, k independent and
preferably uniform hash functions hi(x), 1 ≤ i ≤ k, are first
calculated. Bits at matching indices are then set to 1. The
membership query of a basic Bloom filter consists of testing
corresponding k bits. If all bits are set, the element is assumed
to be a member. It follows that all elements actually added
to the set are correctly recognized. On the other hand, false
positives cannot be ruled out, meaning that some elements are
erroneously claimed to be in the set even though they have
never been added.

The false positive probability p, also called false positive
rate, is a function of the filter size m, of the number of hash
functions k and of the number of elements n added to the set.
The widely used equation linking these parameters to the false
positive rate

p = (1− (1− 1/m)kn)k (5)

has been shown to be too optimistic due the incorrect proba-
bility expectation of a single bit to be one [18]. The functional
dependence is more closely described as

p =
m!

mk(n+1)

m∑
i=1

i∑
j=1

(−1)i−j jknik

(m− i)!j!(i− j)!
. (6)

However, significant disparities can be observed only for
extremely small filter sizes of few bytes in length and large
m/n ratios. Therefore, it is acceptable to approximate (5) by
(1− e−kn/m)k and analytically derive the optimal number of
hash functions of larger filters as

kopt =
m

n
ln 2. (7)

Given false probability rate, number of added elements and
optimal number of hash functions the required filter size is
then

m = − n ln p

(ln 2)2
. (8)

A. Filter Parameters

Bloom filter as an index of wavefronts hitting a reception
sphere reduces overall double counting avoidance memory
requirements, with additional benefits of the constant build
and query times. The double counting rejection efficiency of
a filter should be close to the optimal wavefront differentiation.
In order to avoid the majority of erroneous rejections of rays
at an observation point, the false positive rate should be kept
low. Based on the evaluation results provided in the next
section, and for the purpose of the channel impulse response
calculations, we propose choosing the probability p less or
equal to 10−4 indoors and less or equal to 10−2 outdoors.

Fixed size Bloom filter in a pre-allocated memory space
is best option for a fast ray-tracing implementation. Thus,
a bound on the number of elements n should be known in
advance. Because the number of different wavefronts at given
observation point greatly varies with the simulation parame-
ters, one could get a good estimate by a test run, in which
only reception sphere hits are counted. The number can then
be corrected by a double count probability, giving an upper
bound on the number of elements, and by using (8), the filter
size. Note that due to the decreasing ray spacing, as discussed
earlier, the assessed number of elements would probably be
higher than the actual number of different wavefronts.

Filter size estimation can be eliminated by the use of
scalable Bloom filters [19], which gradually increase storage
capacity while assuring given false positive rate. Conceptually
different and architecturally more demanding dynamic Bloom
filters [20] offer a solution as well if the set cardinality
is unknown a priori. The third option is the use of split
Bloom filters [21], which initially start with more space
than projected and rebuild themselves if false positive rate is
reached. However, all these approaches are not well-suited to
the ray-tracing domain where a ray is commonly handled by
a lightweight thread, possibly executing on massively-parallel
hardware. Nevertheless, more elaborate solution is a topic of
future research.

B. Hashing

Hash functions are at the core of Bloom filters. The pre-
viously stated relations between filter parameters are based
on the assumption of mutually independent and uniformly
distributed hash outputs. Numerous complex functions can
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satisfy the criteria. However, when applied to the ray-tracing
domain, the cost of computing a single hash should be as
low as possible. This excludes not only highly complex
cryptographically strong hashes, such as SHA1 or MD5, but
also other less perfect but still time consuming functions.
Favorably, it has been shown that randomness in hashed input
greatly assists simple hash functions in achieving high level
of uniformity [22].

For the purpose of this research, a linear congruential gener-
ator, which is commonly used as a pseudorandom number gen-
erator, is combined with characteristic sequences introduced
earlier. Let each scene surface and each diffraction edge have
a unique id. A wavefront characteristic sequence is then a
concatenation

x = id1|| id2|| id3|| · · · || iddepth. (9)

Further, let

lcg(seed) = (a× seed+ c) mod b (10)

be a 64-bit implementation of common linear congruential
generator with a = 6364136223846793005, c = 1 and
b = 264. The generator is a variant of Knuth’s MMIX code
that can be found in many Linux C libraries.

First, we iteratively chain outputs of pseudorandom number
generator, seeded with interaction identifiers, to obtain base
hash value

H1(x) = lcg(lcg(lcg(id1)⊕ id2) · · · ⊕ iddepth), (11)

where ⊕ stands for bitwise addition modulo 1. We define a
sequence of the next k − 1 pseudorandom numbers as the
remaining hash values

Hi(x) = lcg(Hi−1(x)), 2 ≤ i ≤ k. (12)

The indices into filter’s bit array are then remainders of the
division of the upper 32-bits of the generator state by filter
size m

hi(x) = (Hi(x) >> 32) mod m, 1 ≤ i ≤ k. (13)

Note that using the upper bits of a pseudorandom generator
state is a common practice to avoid short periods in the low-
order bits when modulus b is power of 2.

The generator has 64-bit internal state with a period of
P ≤ 264. In order not to fail random goodness tests, no
more than

√
P numbers should be used from a linear con-

gruential generator [23]. Consequently, the number of differ-
ent wavefronts at each observation point should not exceed
232/(depth+ k − 1). The above hash formulation effectively
supports Bloom filters of up to 4 Gbits in size at the cost of
one addition and one multiplication per ray interaction.

V. CHANNEL IMPULSE RESPONSE EVALUATION

Rigorous double counting avoidance is important for ad-
vanced channel characterization, including but not limited to
delay spread, direction of signal arrival and channel impulse
response. Since channel impulse response (CIR) completely
describes a linear time-invariant communication channel at

all frequencies and efficient CIR measurements are becoming
intrinsic part of pulse based physical layers, the need for
precise CIR simulation is on rise. For example, the research
of UWB indoor localization with the CIR measurements at
the core of the technology is expected to increasingly rely on
the use of simulation tools. Another example is ray-tracing
based fingerprint positioning technique in OFDM networks
[24]. CIR simulations in urban scenarios have also been long
recognized as an important tool in the design of transmission
systems [25].

In the following, the performance of the proposed Bloom
filtering is evaluated in the CIR context. First, the quality of
evaluated channel impulse responses with respect to double
counting avoidance algorithms is assessed. Space requirement,
being the most limiting parameter of CIR simulations, is
considered to be the second most important metric. Optimal
CS provides exact solution against which other algorithms are
evaluated.

Channel impulse response is typically modeled as a sum of
time-varying number of multipath components in a tap-delayed
linear filter. Time-invariant model is adopted in this research
as time-varying aspects of channel modeling are not relevant
to a static simulation scenario. The time-invariant CIR may be
formulated as

h(τ) =

L∑
i=1

αiδ(τ − τi), (14)

where each of L taps represents a multipath component of
polarity sign-extended (±) real amplitude α, multiplied by
time delayed Dirac-Delta function. Knowing (14) one can
calculate a received signal as a convolution of the CIR with
the transmitted signal, i.e., the received signal is a sum of
attenuated, delayed and possibly overlapping versions of the
transmitted signal, plus white Gaussian noise.

Computing h(τ) by ray tracing is not as straightforward as
one would expect because ray paths, amplitudes and propaga-
tion delays are functions of frequency. Ray-tracing evaluates
signal at a single frequency, thus computing only narrowband
CIR valid for a bandwidth limited transmission. Sub-band
divided ray tracing has been proposed in [26], [27] to fully
evaluate (14). The method involves multiple simulation runs
for a number of center-frequencies of complementary sub-
bands. These narrowband CIRs are then combined together in
frequency space. Inverse Fourier transform gives the final CIR
over wider bandwidth. The amount of computation resources
grows linearly with the subdivision granularity, making space
and time optimization of simulation tools as proposed here
even more important. In the following, only simulations of
individual narrowband CIR are presented and analyzed.

Our in-house radio frequency ray-tracing tool has been
extended with the concepts outlined in this paper. The tool is
configurable with either recursive or non-recursive icosahedral
grids for ray launching. It supports all the surveyed double
counting avoidance algorithms and new highly configurable
Bloom filtering. Distributed wavefronts, as well as plain
double and zero counting algorithms have been included
as well. The tool has been proven in several projects with
telecommunication industry. It is highly optimized GPU-based
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Fig. 4. Analytical plane earth loss is compared to simulated values using
double counting avoidance by Bloom filtering at 900 MHz, with transmitter
and receivers placed 14.6 m and 1.6 m above the ground, respectively.

ray tracer using the NVIDIA OptiX ray-tracing engine, which
is adapted to the radio frequency simulations. Scene objects
are kept in a bounding volume hierarchy entirely on a GPU,
with rays generated and traced through the scene in parallel
threads. The tool was selected over the commercially available
ray tracers because it is fully customizable at source code
level. Knowing all the intricate details of the implementation,
shortcuts, such as dividing surfaces into tiles and other closely-
guarded trade secrets of commercial tools, could not bias the
evaluation.

Before focusing on the CIR analysis we demonstrate the
effect of double counting errors on the fundamental plane earth
propagation scenario by using our ray-tracing tool. The trans-
mission point was placed 14.6 m above the ground whereas
the reception points were assumed to be at the height of
1.6 m above the ground, which is consistent with the outdoor
scenario presented later. 4 km by 4 km ground plane having
electric properties of an asphalt mixture (ϵr = 5.72, µr =
1, σ = 0.0005S/m) was the only reflecting obstacle. In Fig. 4
plane earth loss using Bloom filter double counting avoidance
with low false positives rate (p = 10−4) is plotted along with
the analytical plane earth loss reference [28]

Pr

Pt
= 2

(
λ

4πr

)2 [
1− cos k

2hmhb

r

]
(15)

The simulated path loss matches the reference for r > 70m,
with the expected 30 dB per decade loss above 200 m. The
disagreement for shorter distances is normal because (15)
assumes the transmission and reception point heights to be
small compared to the ground distance r.

Double counting error in simulated plane earth propagation
scenario is demonstrated in Fig. 5. Periodic misalignment of
reception spheres with the spatial distribution of rays leads
to frequent underestimation of the path loss. On the other
hand, the ZC algorithm may occasionally completely miss a
wavefront, which shows as a sporadic loss overestimate.
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Fig. 5. Double counting error in the plane earth scenario shows as frequently
underestimated path loss, subject to the reception sphere alignment with rays’
spatial distribution.

More complex indoor and outdoor scenarios were exam-
ined in the following evaluation runs. Narrowband channel
impulse responses were computed at several observation points
with different double counting avoidance and ray launching
algorithms in place. The geometry, the transmission sources
and the observation points for the two scenarios are presented
in Fig. 6 and Fig. 7. The indoor scenario extends over a
single floor. The internal walls are made of heavy plasterboard
(ϵr = 6, µr = 1, σ = 0.05 S/m) The outer walls, ground and
ceiling material is steel-reinforced concrete (ϵr = 9, µr =
1, σ = 0.09S/m). Most of the buildings in the outdoor scenario
are made from steel-reinforced concrete, whereas the ground
plane is assumed to have asphalt coating. Four sample signal
paths are illustrated per scenario with thousands more actually
simulated. The observation point in the indoor scenario was
placed 0.85 m above the ground in the corner office with the
transmission point in the main corridor 15 cm higher than the
observation point. In the urban scenario, the transmission point
was placed on a building rooftop 14.6 m above the ground
and the reception point 1.6 m above the ground in the vicinity
of some high-rise buildings, which are the heights introduced
earlier in the plane earth scenario. Straight Euclidean paths
between the transmission source and the reception points in
the presented setups were 9.2 m and 104.3 m in length. Both,
the transmission and the reception were simulated assuming
ideal vertically oriented dipole antennas. Indoor simulations
were run at 4 GHz center frequency of the impulse radio
that we use in the research of UWB localization techniques,
whereas the urban simulation took place at 900 MHz GSM
(Global System for Mobile Communications) frequency. If
one employs dipole-like UBW omnidirectional antenna such
as Cobham XPO2V-2.0-18.00/1397 in indoor scenario, the
Fraunhofer distance valid for free space evaluates at 2D2/λ =
210.42/7.49 ≈ 29 cm. The boundary of the radiative near-
field region in realistic scenario can be significantly larger.
For instance, assuming that the largest dimension of the GSM
antenna in outdoor scenario is 2 m, e.g. Kathrein 742 265, the
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Tx

Rx

Fig. 6. Indoor scenario without a ceiling showing the locations of the
observation point (blue dot) and the location of the transmitter (red dot) Four
sample ray paths involving multiple reflections and transmissions are outlined
in red.

Tx

Rx

Fig. 7. Outdoor urban scenario used in the double counting avoidance
evaluation, including four sample ray paths between the transmission point
(red dot) and the observation point (blue dot) The simulated paths consisted
of reflections and edge diffractions.

far-field region would span several kilometers [29]. However,
brute force 3D ray tracing is fully capable of predicting fields
within the Fresnel region because the collective interactions
of all or most of the scatterers are systematically considered
[30].

Multipath signal components were limited by simulation
depth and by the individual path signal loss. The allowed
ray-tracing depth in indoor scenario was 30 consecutive ray
interactions, either reflections or refractions. Note that indoor
geometry has low number of potential diffraction edges, thus
a diffraction phenomenon was not accounted for in indoor
scenario. However, diffraction contribution to the received
signal in urban scenario is significant, whereas signal trans-
mission through steel-concrete buildings is usually omitted.
Being an open space, 20 consecutive reflections or single-edge

diffractions were sufficient in outdoor scenario to arrive at
stable CIR. Up to 150 dB signal loss per multipath component
was allowed in both scenarios.

In indoor scenario 167.772.162 rays were initially launched
per simulation run, which typically took 9 hours to complete.
Fewer interactions in urban scenario allowed 4 times more
rays per simulation in shorter 6-hour time frame. Template
icosahedral grids with matching number of points are recursive
grids at the refinement level of 12 and 13, whereas non-
recursive grids should be configured with 4096 and 8192
partitioning sections. The criterion in a selection of the above
number of rays was the maximum indoor reception sphere
radius of 15 cm for the theoretically longest ray path, given
the scene dimensions and the allowed number of interactions.
The maximum reception sphere radius in the urban scenario
was set to 60 cm. Actual reception sphere radii for most
simulated paths are significantly smaller. For example, taking
that maximum angular distance of the recursive grid at level
12 is approximately 3.23×10−4 radians, the reception sphere
radius for rays travelling 100 m is only 1.87 cm.

For each scenario and both ray launching algorithms the
double counting avoidance by CS was first simulated. The
exact number of different wavefronts n was then used for
setting up Bloom filter parameters. As suggested previously,
one can get approximate number of different wavefronts by
discounting the total number of reception sphere hits if CS
is not available. Table I gives the filter parameters for each
scenario and both ray launching algorithms. Four false positive
rates were selected as a geometric progression with common
ratio 10, starting with p = 0.1. The optimal number of hash
functions is 4 at the highest probability rate up to 14 at the
lowest probability rate. Note that the optimal k depends only
on p as (7) can be simplified to − log2 p. The filter sizes
shown in the table are rounded up to 32-bit boundaries for
better memory alignment. Memory requirements range from
a few up to several tens of Kbytes. Outdoor scenario is
generally less memory demanding with an order of magnitude
less wavefronts hitting the observation point. Larger reception
sphere radii due to a non-recursive grid construction in the ray
launching step led to a larger number of detected wavefronts
and demanded approximately 1.7% and 12.9% increase in the
filter sizes for indoor and outdoor scenarios, respectively.

Considering channel impulse response quality, a double
counting error shows itself as an extra tap, overlapping or
in close temporal proximity to the legitimate tap. On the
other hand, false positives, either in the context of Bloom
filters or as invalid decisions by the AI or AD, exhibit as
missing taps with respect to the exact solution. Table II shows
tap counts for algorithms under consideration for the two
scenarios. Recursive and non-recursive ray-launching grids
are presented separately. The output of CS is regarded to
be the reference solution against which the quality of other
approaches is measured.

The fact that DC and DW allow all rays to affect the
CIR shows as the highest error in the number of taps L.
Well-known theoretical 20.9% double counting rate effectively
doubles to a value above 41% in the indoor scenario when
maximum angle of icosahedral grids is used and the refraction-
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TABLE I
BLOOM FILTER PARAMETERS

Indoor, n = 12, 105 Outdoor, n = 1, 809

p ⌈kopt⌉ m1 Bytes m1 Bytes

Recursive icosahedral grids

0.0001 14 232,064 29,008 34,688 4,336
0.001 10 174,048 21,756 26,016 3,252
0.01 7 116,032 14,504 17,344 2,168
0.1 4 58,016 7,252 8,672 1,084

Indoor, n = 12, 309 Outdoor, n = 2, 037

p ⌈kopt⌉ m1 Bytes m1 Bytes

Non-recursive icosahedral grids

0.0001 14 235,968 29,496 39,072 4,884
0.001 10 176,992 22,124 29,312 3,664
0.01 7 117,984 14,748 19,552 2,444
0.1 4 59,008 7,376 9,792 1,224
1 rounded up to 32-bit boundary

related ray-spacing artefacts occur. Significantly larger error of
at least 300% is reported in the outdoor scenario due to the
highly irregular spacing of rays on the diffraction-modelling
Keller cones. Note that we do not attempt to correct the
reception sphere radii for the closer origin of diffraction rays
as explained in Section II. On the other hand, ZC allows some
misses while introducing new auxiliary rays to minimize the
uncovered area. Because rays cannot be generated uniformly
and maximum icosahedral grid angle is used in determining
reception sphere radii, double count events still occur. Further,
the decreased and irregular ray spacing also contribute to
double counts. Thus, in our experiments even ZC produced
a surplus of CIR taps above 10% without and 180% with the
diffraction phenomenon included. Here one must be aware that
the number of erroneous double taps is even larger as some
taps are actually missing.

The AI and the AD heuristics both base set membership
decisions on the angle similarity. In order to avoid the false
negatives, i.e., double counts, the angle between newly ar-
rived ray and rays in a set should differ at least 2/

√
3α.

However, due to the refraction-decreased ray spacing and
irregular spacing of diffraction rays, false negatives are still
possible, especially for the diffraction rays. The angle criterion
was doubled in simulations to avoid most false negatives in
the indoor scenario, whereas in the outdoor scenario false
negatives still prevailed. Additional source of decision errors
in the AD heuristic are different path lengths of adjacent
rays. Paths within 0.1% length difference were assumed
equal. Nevertheless, even when angle and distance criteria are
used in conjunction, many rays are wrongly associated with
wavefronts. AI is equally prone to wrong decisions with a
few percentage points smaller error indoors compared to AD,
which is still significant, with 21% less taps than expected
being the best result in Table II.

Bloom filters configured with low false positive rates expect-
edly recognize all or most of the taps. In the indoor scenario
there was a single missed tap at p = 10−4. The configured

rate would allow 1 or 2 errors in average at fully populated
set. In the urban scenario the first missing taps occurred at
p = 10−2 as less wavefronts hit the reception sphere, which
allows optimal performance using shorter filters. Increasing p
gradually corrupts channel impulse responses. However, even
at marginal 10−1 Bloom filtering performs significantly better
than any sub-optimal double counting avoidance. Further, the
percentage of missed taps grows slower than the configured
false positive rate. This is expected behavior. In order to
maintain a fixed average rate the filter size should be growing
linearly with the number of inserted elements, whereas the
proposed double counting avoidance uses full size filters from
the start.

The non-recursive icosahedral grids generally perform
worse than the recursive grids as a ray-launching template
in terms of double and missed taps. This can be explained
by less uniform distribution of non-recursively generated rays
with larger maximum and smaller minimum angular distances
at the comparable number of grid points. Optimal wavefront
differentiation produces more valid taps because larger recep-
tion spheres are used. Angle based AD and AI are more error
prone, whereas Bloom filtering—being independent of angular
distribution—performs equally well on both grid templates.

Additional columns in Table II give a continuous signal
loss and its relative error to the reference CS loss, calculated
from the complex tap amplitudes. Further, having multiple
observation points, we calculated the path loss exponent for
the two scenarios as 2.4 indoor and 2.8 outdoor. The outdoor
exponent only seems to be in disagreement with the more
common value around 4 that can be found in many empirical
propagation models within macrocells. Our loss exponent is
primarily affected by the scenario size, which is 400 m by
400 m, whereas the empirical models provide a good approx-
imation at distances larger than the break point, typically
several hundred meters from the transmission source. Due
to short distances the direct and the reflected path lengths
are not similar and highly fluctuates. Additionally, simulations
assumed vertically polarized transmission, which is prone to
significant ground-reflected magnitude variations around the
Brewster angle. In the presented case the angle with zero
magnitude reflection is at 67 degree incidence (ground index
of refraction is 2.39). The simulated scenario is closer to
microcell environment. The base station antenna is relatively
low with respect to some larger buildings in the area. In
addition to free-space propagation, multiple reflections and
diffractions around the vertical edges have a significant impact
on the signal loss. A better empirical model to compare the
presented scenario with would be a dual-slope model in which
path loss exponent for short distances is known to be around
2.

Field CIR measurements do not produce individual taps
with arbitrary time precision. The actual resolution is a re-
ciprocal of the probing pulse bandwidth [31]. Instead of the
individual taps one gets bin amplitudes, which are functionally
dependent on those taps. The quality of CIR can then be given
as a mean and variance of amplitude errors with respect to the
reference CS. In order to analyze the double counting error in
that context, power delay profiles with 5 ns resolution (200
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TABLE II
CHANNEL IMPULSE RESPONSE QUALITY

Indoor scenario Outdoor scenario

Taps Error % Loss [dB] % Taps Error % Loss [dB] %

Recursive icosahedral grids

Characteristic Sequences (CS) 12,105 0 0.00 77.37 0.00 1,809 0 0.00 65.88 0.00
Double Counting (DC) 17,078 4,973 41.08 68.74 -11.15 7,348 5,539 306.19 55.58 -15.63
Zero Counting (ZC) 13,483 1,378 11.38 79.73 3.05 5,070 3,261 180.27 59.49 -9.70
Distributed Wavefronts (DW) 17,078 4,973 41.08 74.76 -3.37 7,348 5,539 306.19 55.54 -15.70
Angle and Interactions (AI) 9,550 -2,555 -21.11 77.05 -0.41 5,036 3,227 178.39 58.82 -10.72
Angle and Distances (AD) 8,728 -3,377 -27.90 76.43 -1.21 4,861 3,052 168.71 58.65 -10.97
Bloom Filter (BF 0.0001) 12,104 -1 -0.01 77.37 0.00 1,809 0 0.00 65.89 0.02
Bloom Filter (BF 0.001) 12,103 -2 -0.02 77.38 0.01 1,809 0 0.00 65.86 -0.03
Bloom Filter (BF 0.01) 12,089 -16 -0.13 77.32 -0.06 1,808 -1 -0.06 66.04 0.24
Bloom Filter (BF 0.1) 11,731 -374 -3.09 76.01 -1.76 1,753 -56 -3.10 66.11 0.35

Indoor scenario Outdoor scenario

Taps Error % Loss [dB] % Taps Error % Loss [dB] %

Non-recursive icosahedral grids

Characteristic Sequences (CS) 12,309 0 0.00 76.16 0.00 2,037 0 0.00 66.81 0.00
Double Counting (DC) 18,476 6,167 50.10 62.53 -17.90 8,254 6,217 305.20 62.60 -6.30
Zero Counting (ZC) 14,424 2,115 17.18 64.64 -15.13 5,710 3,673 180.31 61.16 -8.46
Distributed Wavefronts (DW) 18,476 6,167 50.10 68.16 -10.50 8,254 6,217 305.20 60.90 -8.85
Angle and Interactions (AI) 9,657 -2,652 -21.55 75.86 -0.39 5,606 3,569 175.21 64.53 -3.41
Angle and Distances (AD) 8,845 -3,464 -28.14 75.87 -0.38 5,366 3,329 163.43 63.95 -4.28
Bloom Filter (BF 0.0001) 12,309 0 0.00 76.12 -0.05 2,037 0 0.00 66.74 -0.10
Bloom Filter (BF 0.001) 12,308 -1 -0.01 76.13 -0.04 2,037 0 0.00 66.81 0.00
Bloom Filter (BF 0.01) 12,286 -23 -0.19 76.20 0.05 2,035 -2 -0.10 66.79 -0.03
Bloom Filter (BF 0.1) 11,968 -341 -2.77 76,16 0.00 1,980 -57 -2.80 67.58 1.15

MHz bandwidth-limited pulse) were calculated and compared
to one another. In Fig. 8 DC, ZC, DW and AI are compared to
the optimal CS for the indoor observation point and recursive
ray launching. The mean error and its standard deviation are
high for both DC and ZC with no double counting avoidance
in place. The numerous extra taps show as positive error bias.
DW manages to reduce the mean error, but still produces
unacceptably high variations for good CIR estimate. AI and
AD are only marginally better than CW with slightly less
amplitude variations. On the other hand, Bloom power delay
profiles in Fig. 9 show far superior matches, with the more
stringent variants generating practically optimal results. In the
urban scenario higher deviations are observed for non-Bloom
heuristics but with similar conclusions. Full numerical results
are given in Table III.

The loss metric is far less informative about the algorithmic
errors due to its cumulative nature. Larger tap amplitudes
overshadow smaller, while the time-related CIR information
content is completely lost. Nevertheless, we provide com-
parison of measured path loss against simulations consid-
ering different approaches to double counting elimination.
A measurement campaign has been launched in the city of
Ljubljana in close vicinity of the outdoor scenario presented
earlier. In cooperation with Telecom Slovenia we measured
path loss for a number of points at 2 m above the ground
within UMTS (Universal Mobile Telecommunications System)

cell. The locations of measurements are shown in Fig. 10.
The measurement equipment consisted of the Ascom TEMS
Investigation (Infovista as of 2016) air interface test tool
connected to the Sony Ericsson K800i mobile terminal. The
external antenna was mounted on a vehicle rooftop. Common
pilot channel (CPICH) received signal code powers (RSCP)
of the serving cell expressed in dBm were captured together
with the GPS location data. The measured loss in Fig. 10
is a difference between the 27.7 dBm transmission power
and the reported measurements. Kathrein 742 265 antenna
radiation pattern with 4 degrees electrical tilt and 16.15 dBd
gain was simulated to match on-field conditions as closely
as possible. In order to account for the unknown equipment
loss a calibration factor with respect to the CS algorithm
was computed and applied to all simulated values. Measured
and simulated losses are presented in Fig. 11. In contrast to
the plane earth loss, values presented here are total losses,
including directional antenna gains and equipment losses. The
quality of ray-tracing estimates is then evaluated in terms of
standard deviation of the difference between measured and
simulated path loss. Table IV lists the estimated values. The
BF with the lowest false positives rate practically halves the
error of sub-optimal double counting approaches introduced
by the other algorithms. However, the standard deviation of
5 dB is still high, which can be attributed to the modelling
errors. The area is populated with trees that are not accounted
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Fig. 8. Accuracy of simulated power delay profiles with 5 ns resolution if double counting is allowed or less efficient avoidance heuristics are used (indoor
scenario and recursive grids). Standard deviation of the amplitude errors is between 4 and 12 dB. DC and ZC are additionally penalized by positive mean
offset of several dB.

TABLE III
BINNED PROFILE VARIATIONS

Recursive icosahedral grids Non-recursive icosahedral grids

Indoor Outdoor Indoor Outdoor

µ σ µ σ µ σ µ σ

Double Counting (DC) 5.45 11.86 10.95 5.73 4.62 7.27 9.60 11.77
Zero Counting (ZC) 2.04 11.80 7.47 5.57 1.42 8.64 7.41 6.32
Distributed Wavefronts (DW) 0.58 10.86 10.87 5.90 0.10 6.75 11.05 5.65
Angle and Interactions (AI) 0.31 4.64 7.27 5.24 -0.33 4.24 7.88 5.17
Angle and Distances (AD) -0.22 7.05 7.49 5.14 -0.92 6.88 7.51 5.03
Bloom Filter (BF 0.0001) 0.01 0.06 0.00 0.00 0.00 0.01 0.00 0.00
Bloom Filter (BF 0.001) -0.03 0.18 -0.00 0.00 0.00 0.02 -0.00 0.00
Bloom Filter (BF 0.01) -0.06 0.51 -0.00 0.00 -0.20 0.87 -0.00 0.01
Bloom Filter (BF 0.1) 2.69 11.59 -0.14 0.23 -1.23 4.75 -0.36 0.75



0018-926X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2019.2905780, IEEE
Transactions on Antennas and Propagation

12

40 60 80 100 120 140 160 180 200

Time (ns)

0

10

20

30

40

50

60

70

80

90

100

N
o

rm
a

liz
e

d
 α

2
 (

d
B

)

µ = 0.0
σ = 0.1

CS

BF 0.0001

40 60 80 100 120 140 160 180 200

Time (ns)

0

10

20

30

40

50

60

70

80

90

100

N
o

rm
a

liz
e

d
 α

2
 (

d
B

)

µ = -0.0
σ = 0.2

CS

BF 0.001

40 60 80 100 120 140 160 180 200

Time (ns)

0

10

20

30

40

50

60

70

80

90

100

N
o

rm
a

liz
e

d
 α

2
 (

d
B

)

µ = -0.1
σ = 0.5

CS

BF 0.01

40 60 80 100 120 140 160 180 200

Time (ns)

0

10

20

30

40

50

60

70

80

90

100

N
o

rm
a

liz
e

d
 α

2
 (

d
B

)
µ = 2.7
σ = 11.6

CS

BF 0.1

Fig. 9. Accuracy of simulated power delay profiles with 5 ns resolution when Bloom filters are used (indoor scenario and recursive grids). Nearly optimal
matches are produced for the lowest false positive rates. Moreover, even the highest rate of 0.1 is better than any non-Bloom suboptimal approach.

TABLE IV
SIMULATED VS. MEASURED PATH LOSS [DB]

µ σ

Bloom Filter (BF 0.0001) 0.0 5.2
Double Counting (DC) 10.7 10.4
Zero Counting (ZC) 7.6 10.0
Distributed Wavefronts (DW) 10.7 10.4
Angle and Interactions (AI) 10.7 10.4
Angle and Distances (AD) 10.7 10.4

for in our simulations. The attenuation of rays propagating
through the foliage contributes to the observed deviations due
to multiple scattering phenomena.

Excessive memory storage requirements are the main reason
why optimal CS cannot be used in practice when impulse
responses at several observation points need to be estimated.

Running a simulation per single observation point is usually
not an option as each run can easily take several hours to
complete. Bloom filters are of the same O(n) space bound as
AI and AD, but with significantly smaller constant factor while
providing practically equivalent solutions to O(n × depth)
space bounded CS. Actual memory requirements for the two
scenarios while using recursive icosahedral grids are presented
in Table V. The incident angles memorized by AD and AI
are represented as direction vectors consisting of 3 floats,
distances as single floats and the number of interactions as
single byte values. For a given value of depth, the ratio
to the CS memory size remains constant across experiments
as shown in Fig. 12. The suggested indoor Bloom filters at
p = 10−4 take 4% of the CS space, whereas the suggested
outdoor filtering at p = 10−2 consumes only 3% of the CS
space. Both configurations produce CIRs that marginally differ
from the ones obtained by the optimal CS.

Further advantage of Bloom filtering for a double counting
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Fig. 10. Measurement points in the outdoor path loss evaluation experi-
ment (red dots). The location of transmitter (blue point) is N46.037832◦,
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TABLE V
DOUBLE COUNTING AVOIDANCE MEMORY REQUIREMENTS

Recursive icosahedral grids

Indoor Outdoor

Bytes % Bytes %

Characteristic Sequences (CS) 726,300 100.0 72,360 100.0
Angle and Interactions (AI) 157,365 21.7 23,517 32.5
Angle and Distances (AD) 193,680 26.7 28,944 40.0
Bloom Filter (BF 0.0001) 29,008 4.0 4,336 6.0
Bloom Filter (BF 0.001) 21,756 3.0 3,252 4.5
Bloom Filter (BF 0.01) 14,504 2.0 2,168 3.0
Bloom Filter (BF 0.1) 7,252 1.0 1,084 1.5
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Fig. 12. Relative amount of memory required by the double hit avoidance
algorithms with respect to the optimal CS while simulating 30 indoor
interactions per ray, given in descending order

avoidance over the CS, AD and AI algorithms are constant
membership query times. However, the ray-tracing time far
surpasses the total membership query time for a single obser-
vation point. Hence no significant difference has been observed
in the running times of DC, DW, AI, AD and BFs. This was
not the case for the CS membership queries, which involve
longer characteristic sequences. The total running times of the
CS runs increased by factor 1.2 in average. Finally, smaller
reception sphere radius and auxiliary rays had significant
impact on the ZC simulations, with on average of 2.9-times
longer execution than the best performing algorithms.

VI. DISCUSSION

We use least complex variant of Bloom filter for the double
counting avoidance problem. In Section III we briefly mention
the possibility of using scalable, dynamic and split filters to
address the unknown set cardinality. Other types of filters may
also prove beneficial.

False positive rate can be reduced by allowing some false
negatives, i.e., double counts. There is less or no chance of a
double hit if ray passes the reception sphere sufficiently close
to the sphere central point due to the use of regular grids
in ray launching process. Such rays may be simply omitted
from the set. The criteria are not straightforward, mainly
because of the reduced ray spacing. The other option is the
use of filters that support probabilistic deletions. Retouched
Bloom filter [32] randomly resets some table bits to trade off
false positives against false negatives. More complex selective
clearing process based on training sequences can target only
troublesome false positives, such as those affecting dominant
propagation paths.

Counting Bloom filter keeps a small counter for each
table bit [33], [34]. Instead of setting a bit, corresponding
counter is incremented. Set element removal is accomplished
by decrementing the matching counters. One possible use of
counting filter would be to delete recognized double hits from
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the table and hopefully reduce the overall false positive rate; or
to maintain equivalent rate with shorter tables. The rationale
is that more than two hits per wavefront are rare, thus the
deletion is more likely to reduce the positives rate than to
introduce false negatives.

Probabilistic deletions that are not restricted to double hits
without introducing any false negatives are also achievable as
proposed in DlBF [35]. The method involves additional record
keeping.

Stable Bloom filter [36] has been designed specifically to
address duplicate detection. The filter introduces both types of
errors, but with improved rates in the context of data stream
processing. The problem shows some similarities with the
double counting avoidance. We leave further improvements,
including exploration of the above concepts, for future work.

VII. CONCLUSION

This paper proposed near-optimal double counting avoid-
ance of wavefronts by Bloom filtering that can be applied
to indoor and outdoor scenarios. Even when configured with
the false positive rate as high as 10−4, simulation space
reduction proves to be considerable. Further, the choice of a
ray launching template should not be underestimated. Proper
analytical bounds of sphere radii are provided to capture at
least one ray per passing wavefront. The paper shoved that
channel impulse response simulations free of most algorithmic
errors are possible in a single simulation run for the number
of observation points on the scale of more conventional
coverage predictions. The presented ray-tracing optimization
is particularly important for computing architectures where
memory space is at premium.
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